Index


Ejemplo: Hilo recto corto de corriente

\begin{align} \vec B(\vec r) = \frac{\mu_0}{4 \pi} \int {i d\vec l \times (\vec r - \vec r') \over |\vec r - \vec r'|^3} \end{align}

Observación: Hay simetría de rotación en \(\varphi\) (me muevo en \(\varphi\) y veo lo mismo).

Por lo tanto, el campo solo dependerá de \(\rho\) y de \(z\) :

\begin{align} \vec{B}(\vec{r})=\vec{B}(\rho, \not \varphi, z)=\vec{B}(\rho, z) \end{align}

Punto campo \(\quad \vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}\)

O bien: \(\quad \vec{r}=\rho \cos \varphi \hat{\imath}+\rho \operatorname{sen} \varphi \hat{\jmath}+z \hat{k}\)

O bien: \(\quad \vec{r}=\rho \hat{\rho}+z \hat{k}\)

Punto fuente \(\quad \vec{r}^{\prime}=z^{\prime} \hat{k}\)

\begin{align} &\left(\vec{r}-\vec{r}^{\prime}\right)=x \hat{\imath}+y \hat{\jmath}+\left(z-z^{\prime}\right) \hat{k} \\ &\left|\vec{r}-\vec{r}^{\prime}\right|=\sqrt{x^{2}+y^{2}+\left(z-z^{\prime}\right)^{2}} \end{align}
Cartesianas

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=d z^{\prime} \hat{k} \times\left[\rho \cos \varphi \hat{\imath}+\rho \operatorname{sen} \varphi \hat{\jmath}+\left(z-z^{\prime}\right) \hat{k}\right]\)

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 0 & d z^{\prime} \\ \rho \cos \varphi & \rho \operatorname{sen} \varphi & \left(z-z^{\prime}\right)\end{array}\right|\)

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=-\rho \operatorname{sen} \varphi d z^{\prime} \hat{\imath}+\rho \cos \varphi d z^{\prime} \hat{\jmath}+0 \hat{k}\)

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=\rho d z^{\prime}(-\operatorname{sen} \varphi \hat{\imath}+\cos \varphi \hat{\jmath})\)

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=\rho d z^{\prime} \hat{\varphi}\)

Cilindricas

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=d z^{\prime} \hat{k} \times\left[\rho \hat{\rho}+\left(z-z^{\prime}\right) \hat{k}\right]\)

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=\left|\begin{array}{ccc}\hat{\rho} & \hat{\varphi} & \hat{k} \\ 0 & 0 & d z^{\prime} \\ \rho & 0 & \left(z-z^{\prime}\right)\end{array}\right|\)

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=0 \hat{\rho}+\rho d z^{\prime} \hat{\rho}+0 \hat{k} \quad\)

\(d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)=\rho d z^{\prime} \hat{\varphi}\)

planteo Biot-Savart
\begin{align} \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int \frac{i d \vec{l}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{\mu_{0} i}{4 \pi} \int_{-L / 2}^{L / 2} \frac{\rho d z^{\prime} \hat{\varphi}}{\left(\rho^{2}+\left(z-z^{\prime}\right)^{2}\right)^{3 / 2}} \end{align} \begin{align} B_{\varphi}(\rho, z)=\frac{\mu_{0} i}{4 \pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} \frac{\rho d z^{\prime}}{\left(\rho^{2}+\left(z-z^{\prime}\right)^{2}\right)^{3 / 2}}=\frac{\mu_{0} i \rho}{4 \pi} \int_{-\frac{L}{2}}^{+\frac{L}{2}} \frac{d z^{\prime}}{\left(\rho^{2}+\left(z-z^{\prime}\right)^{2}\right)^{3 / 2}} \end{align}

Por sustitución y por tabla de integrales:

\begin{align} & u=z-z^{\prime} \\ & \int \frac{d u}{\left(\rho^{2}+u^{2}\right)^{3 / 2}}=\frac{u}{\rho^{2} \sqrt{\rho^{2}+u^{2}}}+C \\ & d u=-d z^{\prime} \quad \Rightarrow \quad d z^{\prime}=-d u \\ & B_{\varphi}(\rho, z)=\Theta \frac{\mu_{0} i \rho}{4 \pi} \int_{\left(z+\frac{L}{2}\right)}^{\left.z-\frac{L}{2}\right)} \frac{d u}{\left(\rho^{2}+u^{2}\right)^{\frac{3}{2}}}=-\frac{\mu_{0} i \rho}{4 \pi}\left(\frac{(z-L / 2)}{\rho^{2} \sqrt{\rho^{2}+(z-L / 2)^{2}}}-\frac{(z+L / 2)}{\rho^{2} \sqrt{\rho^{2}+(z+L / 2)^{2}}}\right) \\ \end{align}

Resultado:

\begin{align} \vec{B}(\rho, z)=\frac{\mu_{0} i}{4 \pi \rho}\left(\frac{(L / 2-z)}{\sqrt{\rho^{2}+(z-L / 2)^{2}}}+\frac{(L / 2+z)}{\sqrt{\rho^{2}+(z+L / 2)^{2}}}\right) \hat{\varphi} \end{align}

Hilo infinito

\begin{align} & B_{\varphi}=\lim _{L \rightarrow \infty}\left(\frac{\mu_{0} i}{4 \pi \rho}\left(\frac{(L / 2-z)}{\sqrt{\rho^{2}+(L / 2-z)^{2}}}+\frac{(L / 2+z)}{\sqrt{\rho^{2}+(L / 2+z)^{2}}}\right)\right) \\ & B_{\varphi}=\lim _{L \rightarrow \infty}\left(\frac{\mu_{0} i}{4 \pi \rho}\left(\frac{1}{\sqrt{\left.\left(\frac{\rho}{L / 2-z}\right)\right)^{2}+1}}+\frac{1}{\sqrt{\left(\frac{\rho}{z+L / 2}\right)^{2}+1}}\right)\right) \\ & \vec{B}(\rho)=\frac{\mu_{0} i}{2 \pi \rho} \hat{\varphi} \\ \end{align}